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What is a perverse sheaf?

Let X be a complex algebraic variety with a fixed stratification.
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Illustration of a perverse sheaf on X
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Cohomology of perverse sheaves
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Some extra structure

If X is the constant sheaf on X , then C =H•(X ) is just the singular
cohomology of X .

If F is any object in Db
c (X ), then H•(F ) has a left and right C-action:

C⊗H•(F )→H•(X ⊗F )∼=H•(F ),

H•(F )⊗C→H•(F ⊗X )∼=H•(F ).

So H• is a functor from Db
c (X ) to graded C-bimodules.
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Decomposition of a C∗-variety

N =∞

S = 0

CP1

Consider a variety with a C∗-action, and
decompose it into attracting Białynicki-Birula
cells.

For example:

X0 = {x ∈X | lim
t→0

t ·x = 0}=C

X∞ = {x ∈X | lim
t→0

t ·x =∞}= {∞}.

We study perverse sheaves adapted to such a
stratification.

6



Decomposition of a C∗-variety

N =∞

S = 0

CP1

Consider a variety with a C∗-action, and
decompose it into attracting Białynicki-Birula
cells.
For example:

X0 = {x ∈X | lim
t→0

t ·x = 0}=C

X∞ = {x ∈X | lim
t→0

t ·x =∞}= {∞}.

We study perverse sheaves adapted to such a
stratification.

6



Decomposition of a C∗-variety

N =∞

S = 0

CP1

Consider a variety with a C∗-action, and
decompose it into attracting Białynicki-Birula
cells.
For example:

X0 = {x ∈X | lim
t→0

t ·x = 0}=C

X∞ = {x ∈X | lim
t→0

t ·x =∞}= {∞}.

We study perverse sheaves adapted to such a
stratification.

6



Setup

Let X be a smooth projective T -variety with finitely many fixed
points. Fix a one-parameter subgroup λ : C∗ → T such that Xλ =XT .

Assume the following.

• The decomposition by attracting cells of λ forms a stratification.
• For each T -fixed point p, there is some one-parameter subgroup
that contracts a neighborhood of p to p.

Example
Flag varieties G/P for a reductive algebraic group G.
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Observations

By functoriality of H•, there is always a natural map

Homi
D(F ,G )→Homi

C(H•(F ),H•(G )).

Similarly, restriction to the diagonal gives a natural “multiplication”
map

H•(F1)⊗C · · ·⊗C H•(Fn)→H•(F1⊗·· ·⊗Fn).
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Some known results for RHom

Theorem (Ginzburg)
Let X be a T -variety as before. If F1 and F2 are simple perverse
sheaves on X , then

Homi
D(F1,F2)∼=Homi

C(H•(F1),H•(F2)).

Theorem (Achar–Rider)
The same result as above for parity sheaves adapted to the Bruhat
stratification on a generalized Kac-Moody flag variety.
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The case of tensor products

Theorem (B.)
Let X be a T -variety as before. The multiplication map on the
(T -equivariant) cohomology of simple perverse sheaves is an
isomorphism:

H•(F1⊗·· ·⊗Fn)∼=H•(F1)⊗C · · ·⊗C H•(Fn).
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Proof sketch

We use upward induction on closures of the strata: on the
0-dimensional piece, the isomorphism is easy to check.

The closure of a larger stratum can be split up into the (open) stratum
and the (closed) union of lower strata.

closed

open
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Proof sketch: induction step

Lemma
The multiplication map is an isomorphism on the (open) stratum.

Proof.
The open stratum is an affine space, so the cohomology is easy to
compute.

To compute the action of C, observe that C is generated by the duals
of homology classes given by the opposite stratification.

Since the two stratifications have transverse intersections, this is
computable.
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Proof sketch: induction step

Lemma
The long exact sequence in cohomology of the open/closed
decomposition splits.

Proof.
This is achieved by comparing weights (of mixed Hodge
modules).
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Questions

• Are these isomorphisms true in greater generality?

• What are the consequences in representation theory?
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Thank you!


