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If & is any object in D2(X), then H*(%) has a left and right C-action:

CoH(F)— H'(Xe F)= H'(F),
H (%) C—H(F e X)= H'(F).

So H* is a functor from Df (X) to graded C-bimodules.
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We study perverse sheaves adapted to such a
cpP! stratification.
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Example
Flag varieties G/P for a reductive algebraic group G.
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Similarly, restriction to the diagonal gives a natural “multiplication”
map
H' (F)&®c - 0cH (F,) > H(F 0 - F,).
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Theorem (Ginzburg)
Let X be a T-variety as before. If %, and &, are simple perverse

sheaves on X, then

Homh(%,%,) = Hom(H' (%), H' (%,)).

Theorem (Achar-Rider)
The same result as above for parity sheaves adapted to the Bruhat

stratification on a generalized Kac-Moody flag variety.



The case of tensor products

Theorem (B.)
Let X be a T-variety as before. The multiplication map on the

(T-equivariant) cohomology of simple perverse sheaves is an

isomorphism:

HY(ZF ® - F,)=H (F)&c - ®c H (F,).
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Proof sketch

We use upward induction on closures of the strata: on the

0-dimensional piece, the isomorphism is easy to check.
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Proof sketch

We use upward induction on closures of the strata: on the

0-dimensional piece, the isomorphism is easy to check.

The closure of a larger stratum can be split up into the (open) stratum
and the (closed) union of lower strata.

open

closed
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Proof sketch: induction step

Lemma
The multiplication map is an isomorphism on the (open) stratum.
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Proof sketch: induction step

Lemma
The multiplication map is an isomorphism on the (open) stratum.

Proof.
The open stratum is an affine space, so the cohomology is easy to

compute.

To compute the action of C, observe that C is generated by the duals

of homology classes given by the opposite stratification.

Since the two stratifications have transverse intersections, this is
computable. O
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Proof sketch: induction step

Lemma
The long exact sequence in cohomology of the open/closed

decomposition splits.
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Proof sketch: induction step

Lemma
The long exact sequence in cohomology of the open/closed

decomposition splits.
Proof.
This is achieved by comparing weights (of mixed Hodge

modules).
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Questions

« Are these isomorphisms true in greater generality?
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Questions

« Are these isomorphisms true in greater generality?

- What are the consequences in representation theory?
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Thank you!



