

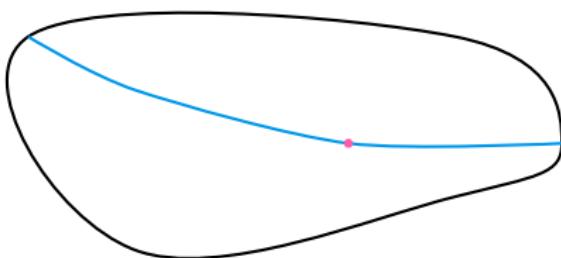
Cohomology of perverse sheaves on T -varieties

Asilata Bapat

The University of Georgia

What is a perverse sheaf?

Let X be a complex algebraic variety with a fixed stratification.



What is a perverse sheaf?

Let X be a complex algebraic variety with a fixed stratification.

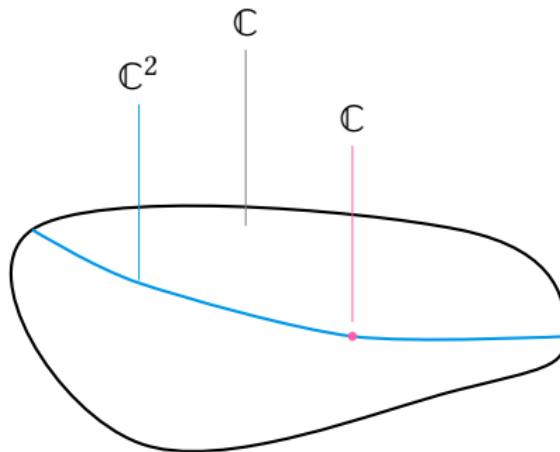
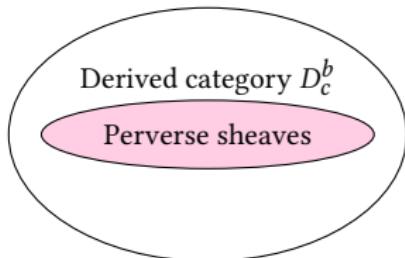


Illustration of a perverse sheaf on X

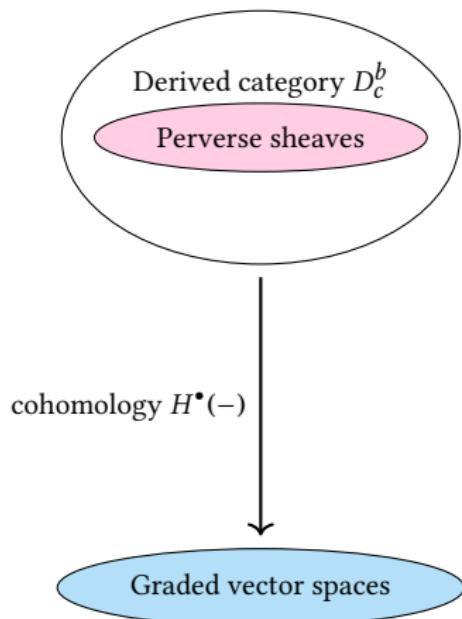
Cohomology of perverse sheaves

Perverse sheaves

Cohomology of perverse sheaves



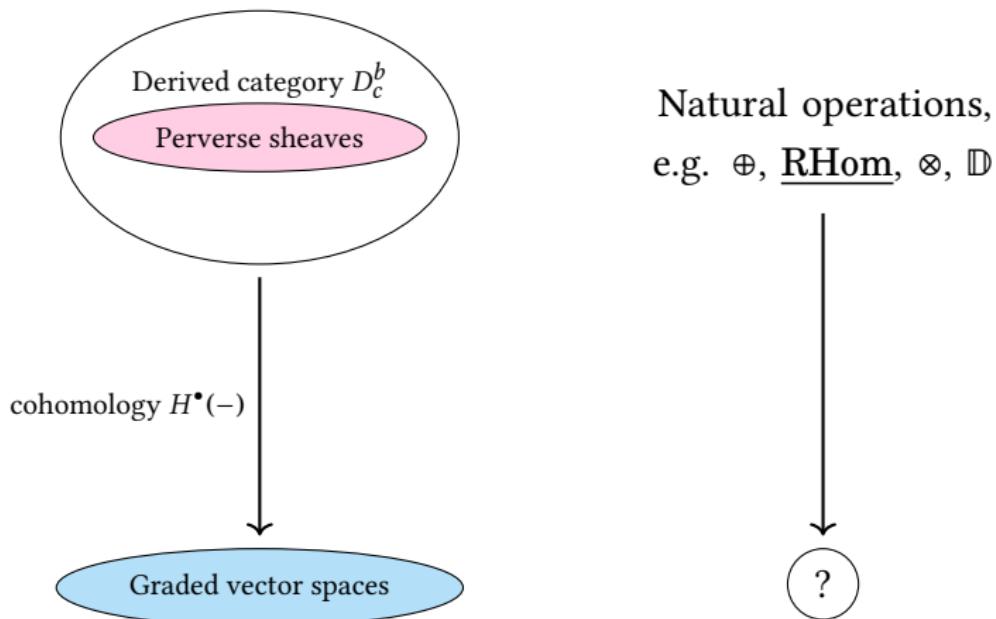
Cohomology of perverse sheaves



Cohomology of perverse sheaves



Cohomology of perverse sheaves



Some extra structure

If \underline{X} is the constant sheaf on X , then $C = H^\bullet(\underline{X})$ is just the singular cohomology of X .

Some extra structure

If \underline{X} is the constant sheaf on X , then $C = H^\bullet(\underline{X})$ is just the singular cohomology of X .

If \mathcal{F} is any object in $D_c^b(X)$, then $H^\bullet(\mathcal{F})$ has a left and right C -action:

$$C \otimes H^\bullet(\mathcal{F}) \rightarrow H^\bullet(\underline{X} \otimes \mathcal{F}) \cong H^\bullet(\mathcal{F}),$$

$$H^\bullet(\mathcal{F}) \otimes C \rightarrow H^\bullet(\mathcal{F} \otimes \underline{X}) \cong H^\bullet(\mathcal{F}).$$

Some extra structure

If \underline{X} is the constant sheaf on X , then $C = H^\bullet(\underline{X})$ is just the singular cohomology of X .

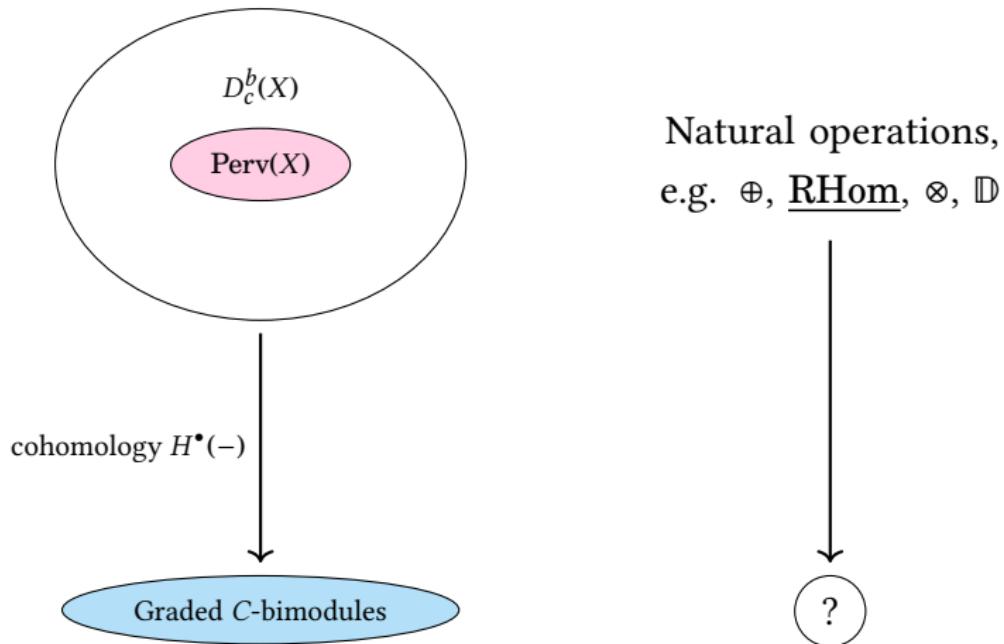
If \mathcal{F} is any object in $D_c^b(X)$, then $H^\bullet(\mathcal{F})$ has a left and right C -action:

$$C \otimes H^\bullet(\mathcal{F}) \rightarrow H^\bullet(\underline{X} \otimes \mathcal{F}) \cong H^\bullet(\mathcal{F}),$$

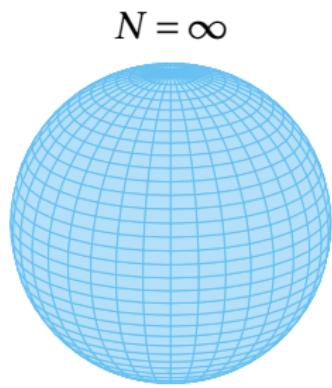
$$H^\bullet(\mathcal{F}) \otimes C \rightarrow H^\bullet(\mathcal{F} \otimes \underline{X}) \cong H^\bullet(\mathcal{F}).$$

So H^\bullet is a functor from $D_c^b(X)$ to graded C -bimodules.

Cohomology of perverse sheaves



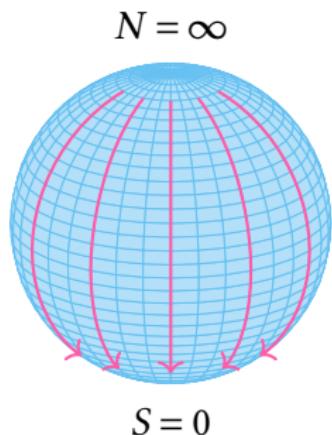
Decomposition of a \mathbb{C}^* -variety



Consider a variety with a \mathbb{C}^* -action, and decompose it into *attracting Białynicki-Birula cells*.

$$\mathbb{C}P^1$$

Decomposition of a \mathbb{C}^* -variety



Consider a variety with a \mathbb{C}^* -action, and decompose it into *attracting Białynicki-Birula cells*.

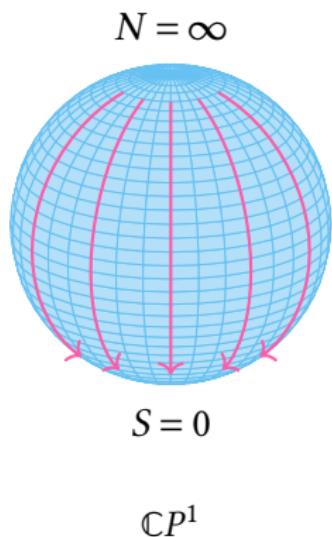
For example:

$$X_0 = \{x \in X \mid \lim_{t \rightarrow 0} t \cdot x = 0\} = \mathbb{C}$$

$$X_\infty = \{x \in X \mid \lim_{t \rightarrow 0} t \cdot x = \infty\} = \{\infty\}.$$

$$\mathbb{C}P^1$$

Decomposition of a \mathbb{C}^* -variety



Consider a variety with a \mathbb{C}^* -action, and decompose it into *attracting Białynicki-Birula cells*.

For example:

$$X_0 = \{x \in X \mid \lim_{t \rightarrow 0} t \cdot x = 0\} = \mathbb{C}$$

$$X_\infty = \{x \in X \mid \lim_{t \rightarrow 0} t \cdot x = \infty\} = \{\infty\}.$$

We study perverse sheaves adapted to such a stratification.

Setup

Let X be a smooth projective T -variety with finitely many fixed points. Fix a one-parameter subgroup $\lambda: \mathbb{C}^* \rightarrow T$ such that $X^\lambda = X^T$.

Setup

Let X be a smooth projective T -variety with finitely many fixed points. Fix a one-parameter subgroup $\lambda: \mathbb{C}^* \rightarrow T$ such that $X^\lambda = X^T$.

Assume the following.

- The decomposition by attracting cells of λ forms a stratification.
- For each T -fixed point p , there is *some* one-parameter subgroup that contracts a neighborhood of p to p .

Setup

Let X be a smooth projective T -variety with finitely many fixed points. Fix a one-parameter subgroup $\lambda: \mathbb{C}^* \rightarrow T$ such that $X^\lambda = X^T$.

Assume the following.

- The decomposition by attracting cells of λ forms a stratification.
- For each T -fixed point p , there is *some* one-parameter subgroup that contracts a neighborhood of p to p .

Example

Flag varieties G/P for a reductive algebraic group G .

Observations

By functoriality of H^\bullet , there is always a natural map

$$\mathrm{Hom}_D^i(\mathcal{F}, \mathcal{G}) \rightarrow \mathrm{Hom}_C^i(H^\bullet(\mathcal{F}), H^\bullet(\mathcal{G})).$$

Observations

By functoriality of H^\bullet , there is always a natural map

$$\mathrm{Hom}_D^i(\mathcal{F}, \mathcal{G}) \rightarrow \mathrm{Hom}_C^i(H^\bullet(\mathcal{F}), H^\bullet(\mathcal{G})).$$

Similarly, restriction to the diagonal gives a natural “multiplication” map

$$H^\bullet(\mathcal{F}_1) \otimes_C \cdots \otimes_C H^\bullet(\mathcal{F}_n) \rightarrow H^\bullet(\mathcal{F}_1 \otimes \cdots \otimes \mathcal{F}_n).$$

Some known results for RHom

Theorem (Ginzburg)

Let X be a T -variety as before. If \mathcal{F}_1 and \mathcal{F}_2 are simple perverse sheaves on X , then

$$\mathrm{Hom}_D^i(\mathcal{F}_1, \mathcal{F}_2) \cong \mathrm{Hom}_C^i(H^\bullet(\mathcal{F}_1), H^\bullet(\mathcal{F}_2)).$$

Some known results for RHom

Theorem (Ginzburg)

Let X be a T -variety as before. If \mathcal{F}_1 and \mathcal{F}_2 are simple perverse sheaves on X , then

$$\mathrm{Hom}_D^i(\mathcal{F}_1, \mathcal{F}_2) \cong \mathrm{Hom}_C^i(H^\bullet(\mathcal{F}_1), H^\bullet(\mathcal{F}_2)).$$

Theorem (Achar–Rider)

The same result as above for parity sheaves adapted to the Bruhat stratification on a generalized Kac-Moody flag variety.

The case of tensor products

Theorem (B.)

Let X be a T -variety as before. The multiplication map on the (T -equivariant) cohomology of simple perverse sheaves is an isomorphism:

$$H^\bullet(\mathcal{F}_1 \otimes \cdots \otimes \mathcal{F}_n) \cong H^\bullet(\mathcal{F}_1) \otimes_C \cdots \otimes_C H^\bullet(\mathcal{F}_n).$$

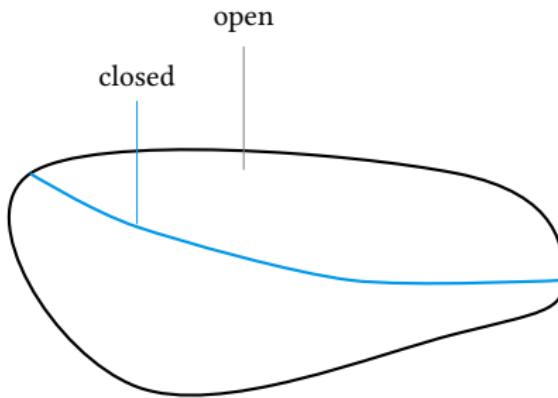
Proof sketch

We use upward induction on closures of the strata: on the 0-dimensional piece, the isomorphism is easy to check.

Proof sketch

We use upward induction on closures of the strata: on the 0-dimensional piece, the isomorphism is easy to check.

The closure of a larger stratum can be split up into the (open) stratum and the (closed) union of lower strata.



Proof sketch: induction step

Lemma

The multiplication map is an isomorphism on the (open) stratum.

Proof sketch: induction step

Lemma

The multiplication map is an isomorphism on the (open) stratum.

Proof.

The open stratum is an affine space, so the cohomology is easy to compute.

Proof sketch: induction step

Lemma

The multiplication map is an isomorphism on the (open) stratum.

Proof.

The open stratum is an affine space, so the cohomology is easy to compute.

To compute the action of C , observe that C is generated by the duals of homology classes given by the *opposite* stratification.

Proof sketch: induction step

Lemma

The multiplication map is an isomorphism on the (open) stratum.

Proof.

The open stratum is an affine space, so the cohomology is easy to compute.

To compute the action of C , observe that C is generated by the duals of homology classes given by the *opposite* stratification.

Since the two stratifications have transverse intersections, this is computable. □

Proof sketch: induction step

Lemma

The long exact sequence in cohomology of the open/closed decomposition splits.

Proof sketch: induction step

Lemma

The long exact sequence in cohomology of the open/closed decomposition splits.

Proof.

This is achieved by comparing weights (of mixed Hodge modules).

Questions

- Are these isomorphisms true in greater generality?

Questions

- Are these isomorphisms true in greater generality?
- What are the consequences in representation theory?

Thank you!