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Introduction to D-modules and
Bernstein–Sato polynomials



What is a D-module?

Di�erential operators on a space form a ring D.

Example
On C2, the ring D is generated by ∂x , ∂y , and polynomials in x and y.

Some examples of di�erential operators:

∂x∂y , x∂y +y, (x2 +y)∂2
x∂y +y∂y .
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What is a D-module?

A D-module is a left module over D.
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What is a D-module?

A D-module is a left module over D.

Example (on C2)
D acts on the space of polynomials C[x,y]. For example:(

y∂x +x
) ·x2 = 2yx+x3.

So C[x,y] is a D-module.
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What is a D-module?

A D-module is a left module over D.

Example
Df −1 is the D-module generated by (1/f ). Elements:

∂xf −1, y∂yf −1, x2f −1, etc.
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An interesting invariant of D-modules

The Bernstein–Sato polynomial (or the b-function) is an invariant
attached to a D-module.

Case of interest
The b-function of Df −1, also called the b-function of f .
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What is the b-function of f ?

Theorem (Bernstein)
For any polynomial f , there is some di�erential operator L and some
polynomial b(n) such that

L · (f n+1)= b(n) f n.

The minimal monic polynomial b(n) satisfying such an equation is
called the b-function of f .
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What is the b-function of f ?

De�nition/Theorem
Minimal monic polynomial b(n) such that L · (f n+1)= b(n) f n.
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What is the b-function of f ?

De�nition/Theorem
Minimal monic polynomial b(n) such that L · (f n+1)= b(n) f n.

Example: f (x)= x

∂x · (xn+1)= (n+1)xn.

b(n)= (n+1).
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What is the b-function of f ?

De�nition/Theorem
Minimal monic polynomial b(n) such that L · (f n+1)= b(n) f n.

Example: f (x,y)= xy

∂x∂y · (xy)n+1 = (n+1)2 (xy)n.

b(n)= (n+1)2.
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What is the b-function of f ?

De�nition/Theorem
Minimal monic polynomial b(n) such that L · (f n+1)= b(n) f n.

Example: f (x,y)= x3 +y2

1
216 (18x∂x∂2

y+8∂3
x+54n∂2

y+81∂2
y)·(x3+y2)n+1 = (n+1)

(
n+ 5

6

)(
n+ 7

6

)
(x3+y2)n.

b(n)= (n+1)
(
n+ 5

6

)(
n+ 7

6

)
.
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What is the b-function of f ?

De�nition/Theorem
Minimal monic polynomial b(n) such that L · (f n+1)= b(n) f n.

Example: f (x,y)= x3 +y4

L= 248832y2∂3
x∂

2
yn

2 +497664y2∂3
x∂

2
yn+245952y2∂3

x∂
2
y −104976y∂5

yn
2

−209952y∂5
yn−103761y∂5

y +663552y∂3
x∂yn

3 +3234816y∂3
x∂yn

2 +4460544y∂3
x∂yn

+1874880y∂3
x∂y +559872∂4

yn
3 +1469664∂4

yn
2 +1257768∂4

yn+350406∂4
y

+1327104∂3
xn

4 +6635520∂3
xn

3 +12699648∂3
xn

2 +10764288∂3
xn+3363136∂3

x .

b(n)= (n+1)
(
n+ 5

6

)(
n+ 7

6

)(
n+ 7

12

)(
n+ 11

12

)(
n+ 13

12

)(
n+ 17

12

)
.
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Singularity invariants and the
monodromy conjecture



The b-function and geometry

Question
What does the b-function tell us about the geometry of V (f )?

Remarks

• V (f ) is smooth if and only if b(n)= (n+1).
• The largest root of b(n) is the negative of the log canonical

threshold of f .
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The b-function and geometry

Roots of
b-function

Eigenvalues of
monodromy

on Milnor �ber
cohomology

exp(2πi−)

(1980s)

Poles of local
topological

zeta function

Strong monodromy conjecture
(1990s)

exp(2πi−)
Monodromy conjecture
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Weyl hyperplane arrangements

Hyperplane arrangements formed by the root systems of semisimple
Lie algebras.

Examples: A2, G2, and B3 arrangements

(Source: John Stembridge)
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Hyperplane arrangements formed by the root systems of semisimple
Lie algebras.

Examples: A2, G2, and B3 arrangements

(Source: John Stembridge)
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Main theorem

Theorem (B.–Walters 2015)
The strong monodromy conjecture holds for all Weyl hyperplane
arrangements.

That is, every pole of the LTZF is a root of the b-function.
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Main theorem

Theorem (B.–Walters 2015)
The strong monodromy conjecture holds for all Weyl hyperplane
arrangements.

That is, every pole of the LTZF is a root of the b-function.
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Proof sketch of main theorem

Observations

• (Budur–Mustaţă–Teitler 2011) It is su�cient to check that one
particular pole of the LTZF is a root of the b-function.

• (Opdam 1989) This number appears as a root of the b-function of
a di�erent polynomial.

Key lemma
The b-function of the second polynomial divides the b-function of the
�rst polynomial.
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Some computations and further
directions



The b-function of the Vandermonde determinant

The type An Weyl arrangement is cut out by the following
polynomial:

Vn =
∏

1≤i<j≤n
(xj −xi)= det


1 1 · · · 1
x1 x2 · · · xn
...

... . . . ...
xn−1

1 xn−1
2 · · · xn−1

n


This polynomial is called the Vandermonde determinant.
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The b-function of the Vandermonde determinant

Computations (in Macaulay2 and Singular) reveal the following
pattern:

bV1(s)= 1 (by convention)

bV2(s)= (s+1)

bV3(s)= (s+1) ·
(
s+ 2

3

)(
s+ 3

3

)(
s+ 4

3

)
bV4(s)= bV3(s) ·

(
s+ 3

6

)(
s+ 4

6

)
· · ·

(
s+ 9

6

)
bV5(s)= bV4(s) ·

(
s+ 4

10

)(
s+ 5

10

)
· · ·

(
s+ 16

10

)
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The b-function of the Vandermonde determinant

Theorem (B.–Walters 2015)
We have a divisibility relation as follows:

bVn(s)
∣∣∣cn(s) ·

(n−1)2∏
i=(n−1)

(
s+ i(n

2
))

.

Here, cn(s) is a recursive expression in terms of the b-functions of
smaller Vandermonde determinants.
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Further directions

Conjecture
The divisibility relation in the previous theorem is an equality.

Namely,

bVn(s)= cn(s) ·
(n−1)2∏
i=(n−1)

(
s+ i(n

2
))

.
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Further directions

Questions

• Can we compute the b-functions of all Weyl arrangements?
• What about other natural symmetric polynomials arising from

Lie theory?
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Thank you!
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