

Bernstein–Sato polynomials and monodromy conjectures for Weyl arrangements

Asilata Bapat

The University of Georgia

Introduction to \mathcal{D} -modules and Bernstein–Sato polynomials

What is a \mathcal{D} -module?

Differential operators on a space form a ring \mathcal{D} .

What is a \mathcal{D} -module?

Differential operators on a space form a ring \mathcal{D} .

Example

On \mathbb{C}^2 , the ring \mathcal{D} is generated by ∂_x , ∂_y , and polynomials in x and y .

Some examples of differential operators:

$$\partial_x \partial_y, \quad x \partial_y + y, \quad (x^2 + y) \partial_x^2 \partial_y + y \partial_y.$$

What is a \mathcal{D} -module?

A \mathcal{D} -module is a left module over \mathcal{D} .

What is a \mathcal{D} -module?

A \mathcal{D} -module is a left module over \mathcal{D} .

Example (on \mathbb{C}^2)

\mathcal{D} acts on the space of polynomials $\mathbb{C}[x, y]$. For example:

$$(y\partial_x + x) \cdot x^2 = 2yx + x^3.$$

So $\mathbb{C}[x, y]$ is a \mathcal{D} -module.

What is a \mathcal{D} -module?

A \mathcal{D} -module is a left module over \mathcal{D} .

Example

$\mathcal{D}f^{-1}$ is the \mathcal{D} -module generated by $(1/f)$. Elements:

$$\partial_x f^{-1}, y\partial_y f^{-1}, x^2 f^{-1}, \text{ etc.}$$

An interesting invariant of \mathcal{D} -modules

The Bernstein–Sato polynomial (or the *b*-function) is an invariant attached to a \mathcal{D} -module.

An interesting invariant of \mathcal{D} -modules

The Bernstein–Sato polynomial (or the *b*-function) is an invariant attached to a \mathcal{D} -module.

Case of interest

The *b*-function of $\mathcal{D}f^{-1}$, also called the *b*-function of f .

What is the b -function of f ?

Theorem (Bernstein)

For any polynomial f , there is some differential operator L and some polynomial $b(n)$ such that

$$L \cdot (f^{n+1}) = b(n) f^n.$$

The minimal monic polynomial $b(n)$ satisfying such an equation is called the b -function of f .

What is the b -function of f ?

Definition/Theorem

Minimal monic polynomial $b(n)$ such that $L \cdot (f^{n+1}) = b(n)f^n$.

What is the b -function of f ?

Definition/Theorem

Minimal monic polynomial $b(n)$ such that $L \cdot (f^{n+1}) = b(n)f^n$.

Example: $f(x) = x$

$$\partial_x \cdot (x^{n+1}) = (n+1)x^n.$$

$$b(n) = (n+1).$$

What is the b -function of f ?

Definition/Theorem

Minimal monic polynomial $b(n)$ such that $L \cdot (f^{n+1}) = b(n)f^n$.

Example: $f(x, y) = xy$

$$\partial_x \partial_y \cdot (xy)^{n+1} = (n+1)^2 (xy)^n.$$

$$b(n) = (n+1)^2.$$

What is the b -function of f ?

Definition/Theorem

Minimal monic polynomial $b(n)$ such that $L \cdot (f^{n+1}) = b(n)f^n$.

Example: $f(x, y) = x^3 + y^2$

$$\frac{1}{216}(18x\partial_x\partial_y^2 + 8\partial_x^3 + 54n\partial_y^2 + 81\partial_y^2) \cdot (x^3 + y^2)^{n+1} = (n+1)\left(n + \frac{5}{6}\right)\left(n + \frac{7}{6}\right)(x^3 + y^2)^n.$$

$$b(n) = (n+1)\left(n + \frac{5}{6}\right)\left(n + \frac{7}{6}\right).$$

What is the b -function of f ?

Definition/Theorem

Minimal monic polynomial $b(n)$ such that $L \cdot (f^{n+1}) = b(n)f^n$.

Example: $f(x, y) = x^3 + y^4$

$$\begin{aligned} L = & 248832y^2\partial_x^3\partial_y^2n^2 + 497664y^2\partial_x^3\partial_y^2n + 245952y^2\partial_x^3\partial_y^2 - 104976y\partial_y^5n^2 \\ & - 209952y\partial_y^5n - 103761y\partial_y^5 + 663552y\partial_x^3\partial_y n^3 + 3234816y\partial_x^3\partial_y n^2 + 4460544y\partial_x^3\partial_y n \\ & + 1874880y\partial_x^3\partial_y + 559872\partial_y^4n^3 + 1469664\partial_y^4n^2 + 1257768\partial_y^4n + 350406\partial_y^4 \\ & + 1327104\partial_x^3n^4 + 6635520\partial_x^3n^3 + 12699648\partial_x^3n^2 + 10764288\partial_x^3n + 3363136\partial_x^3. \end{aligned}$$

$$b(n) = (n+1) \left(n + \frac{5}{6} \right) \left(n + \frac{7}{6} \right) \left(n + \frac{7}{12} \right) \left(n + \frac{11}{12} \right) \left(n + \frac{13}{12} \right) \left(n + \frac{17}{12} \right).$$

Singularity invariants and the monodromy conjecture

The b -function and geometry

Question

What does the b -function tell us about the geometry of $V(f)$?

The b -function and geometry

Question

What does the b -function tell us about the geometry of $V(f)$?

Remarks

- $V(f)$ is smooth if and only if $b(n) = (n + 1)$.

The b -function and geometry

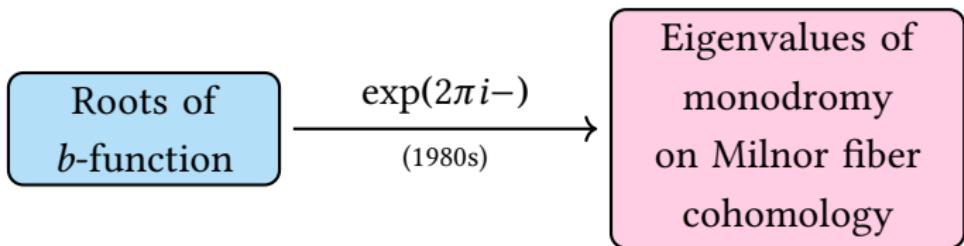
Question

What does the b -function tell us about the geometry of $V(f)$?

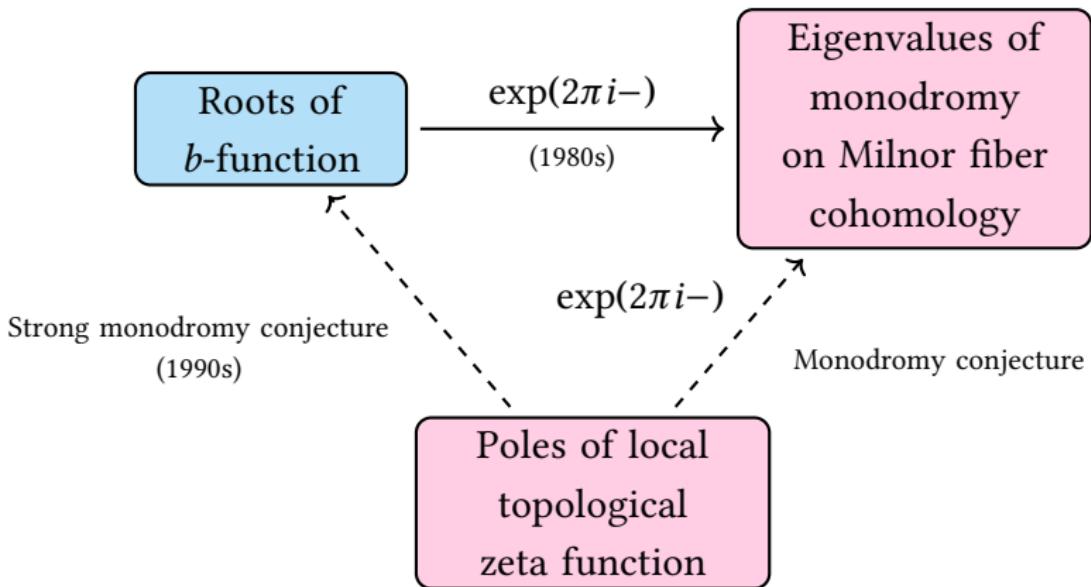
Remarks

- $V(f)$ is smooth if and only if $b(n) = (n + 1)$.
- The largest root of $b(n)$ is the negative of the log canonical threshold of f .

The b -function and geometry



The b -function and geometry



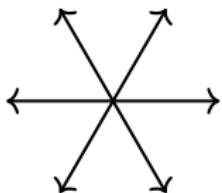
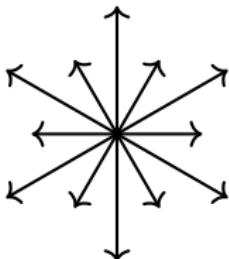
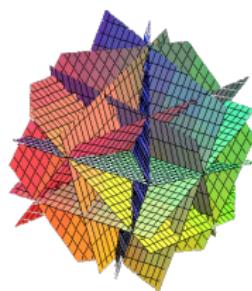
Weyl hyperplane arrangements

Hyperplane arrangements formed by the root systems of semisimple Lie algebras.

Weyl hyperplane arrangements

Hyperplane arrangements formed by the root systems of semisimple Lie algebras.

Examples: A2, G2, and B3 arrangements



(Source: John Stembridge)

Main theorem

Theorem (B.-Walters 2015)

The strong monodromy conjecture holds for all Weyl hyperplane arrangements.

Main theorem

Theorem (B.-Walters 2015)

The strong monodromy conjecture holds for all Weyl hyperplane arrangements.

That is, every pole of the LTZF is a root of the b -function.

Proof sketch of main theorem

Observations

- (Budur–Mustaţă–Teitler 2011) It is sufficient to check that one particular pole of the LTZF is a root of the b -function.

Proof sketch of main theorem

Observations

- (Budur–Mustaţă–Teitler 2011) It is sufficient to check that one particular pole of the LTZF is a root of the b -function.
- (Opdam 1989) This number appears as a root of the b -function of a different polynomial.

Proof sketch of main theorem

Observations

- (Budur–Mustaţă–Teitler 2011) It is sufficient to check that one particular pole of the LTZF is a root of the b -function.
- (Opdam 1989) This number appears as a root of the b -function of a different polynomial.

Key lemma

The b -function of the second polynomial divides the b -function of the first polynomial.

Some computations and further directions

The b -function of the Vandermonde determinant

The type A_n Weyl arrangement is cut out by the following polynomial:

$$V_n = \prod_{1 \leq i < j \leq n} (x_j - x_i) = \det \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \cdots & x_n^{n-1} \end{pmatrix}$$

This polynomial is called the Vandermonde determinant.

The b -function of the Vandermonde determinant

Computations (in Macaulay2 and Singular) reveal the following pattern:

$$b_{V_1}(s) = 1 \quad (\text{by convention})$$

The b -function of the Vandermonde determinant

Computations (in Macaulay2 and Singular) reveal the following pattern:

$$b_{V_1}(s) = 1 \quad (\text{by convention})$$

$$b_{V_2}(s) = (s + 1)$$

The b -function of the Vandermonde determinant

Computations (in Macaulay2 and Singular) reveal the following pattern:

$$b_{V_1}(s) = 1 \quad (\text{by convention})$$

$$b_{V_2}(s) = (s + 1)$$

$$b_{V_3}(s) = (s + 1) \cdot \left(s + \frac{2}{3}\right) \left(s + \frac{3}{3}\right) \left(s + \frac{4}{3}\right)$$

The b -function of the Vandermonde determinant

Computations (in Macaulay2 and Singular) reveal the following pattern:

$$b_{V_1}(s) = 1 \quad (\text{by convention})$$

$$b_{V_2}(s) = (s + 1)$$

$$b_{V_3}(s) = (s + 1) \cdot \left(s + \frac{2}{3}\right) \left(s + \frac{3}{3}\right) \left(s + \frac{4}{3}\right)$$

$$b_{V_4}(s) = b_{V_3}(s) \cdot \left(s + \frac{3}{6}\right) \left(s + \frac{4}{6}\right) \cdots \left(s + \frac{9}{6}\right)$$

The b -function of the Vandermonde determinant

Computations (in Macaulay2 and Singular) reveal the following pattern:

$$b_{V_1}(s) = 1 \quad (\text{by convention})$$

$$b_{V_2}(s) = (s + 1)$$

$$b_{V_3}(s) = (s + 1) \cdot \left(s + \frac{2}{3}\right) \left(s + \frac{3}{3}\right) \left(s + \frac{4}{3}\right)$$

$$b_{V_4}(s) = b_{V_3}(s) \cdot \left(s + \frac{3}{6}\right) \left(s + \frac{4}{6}\right) \cdots \left(s + \frac{9}{6}\right)$$

$$b_{V_5}(s) = b_{V_4}(s) \cdot \left(s + \frac{4}{10}\right) \left(s + \frac{5}{10}\right) \cdots \left(s + \frac{16}{10}\right)$$

The b -function of the Vandermonde determinant

Theorem (B.-Walters 2015)

We have a divisibility relation as follows:

$$b_{V_n}(s) \mid c_n(s) \cdot \prod_{i=(n-1)}^{(n-1)^2} \left(s + \frac{i}{\binom{n}{2}} \right).$$

The b -function of the Vandermonde determinant

Theorem (B.-Walters 2015)

We have a divisibility relation as follows:

$$b_{V_n}(s) \mid c_n(s) \cdot \prod_{i=(n-1)}^{(n-1)^2} \left(s + \frac{i}{\binom{n}{2}} \right).$$

Here, $c_n(s)$ is a recursive expression in terms of the b -functions of smaller Vandermonde determinants.

Further directions

Conjecture

The divisibility relation in the previous theorem is an equality.

Further directions

Conjecture

The divisibility relation in the previous theorem is an equality.
Namely,

$$b_{V_n}(s) = c_n(s) \cdot \prod_{i=(n-1)}^{(n-1)^2} \left(s + \frac{i}{\binom{n}{2}} \right).$$

Further directions

Questions

- Can we compute the b -functions of all Weyl arrangements?
- What about other natural symmetric polynomials arising from Lie theory?

Thank you!